Tag: public key cryptography

  • DKIM Security: How Signing and Key Rotation Stop Email Spoofing

    Introduction

    DKIM (DomainKeys Identified Mail) is one of the most effective ways to verify that an email truly came from your organization. But many companies misunderstand one crucial truth:

    DKIM is only as strong as the protection of its private key.

    If attackers obtain your DKIM private key, they can sign email that appears cryptographically legitimate — even if it comes from a malicious server. This is why key length, rotation, and protection matter just as much as turning DKIM “on.”


    Section 1 — What DKIM Actually Does

    DKIM works by attaching a digital signature to every outbound message.
    It ensures:

    • The message hasn’t been altered
    • The sender is authorized
    • The domain identity can be verified

    The core elements are:

    1️⃣ DKIM Selector (s=)

    Identifies which key is used.
    Example:
    s=mail2025;

    2️⃣ DKIM Domain (d=)

    The domain signing the message.
    Example:
    d=example-corp-secure.com;

    3️⃣ Public Key (Published in DNS)

    Stored in a TXT record:
    mail2025._domainkey.example-corp-secure.com

    4️⃣ Private Key (kept hidden on the mail server)

    This is the key attackers target.
    It signs every outbound message.


    Section 2 — Why Private Keys Must Be 2048-bit Minimum

    Attackers today can break 1024-bit DKIM keys.

    • Cloud computing
    • GPU farms
    • Distributed cracking

    This is why Microsoft and major ESPs recommend 2048-bit keys.

    Weak DKIM = forged trust.


    Section 3 — Why You Must Rotate DKIM Keys Regularly

    Even a strong key becomes weaker over time:

    • Keys leak
    • Keys get copied
    • Keys get exposed in old backups
    • Misconfigured systems reuse keys
    • Bad actors gather DNS data for months

    Weekly or monthly rotation is considered best practice in regulated industries like banking.

    Rotation protects your domain even if an attacker manages to obtain an older key.


    Section 4 — How an Attacker Exploits DKIM

    If the private key is stolen:

    • They can sign malware
    • They can sign phishing
    • They bypass SPF failures
    • They pass DKIM alignment
    • They pass DMARC alignment
    • Email goes straight to inbox

    This is why DKIM alone is not enough.


    Section 5 — Why DKIM Matters

    • Prevents email tampering
    • Builds domain trust
    • Enables DMARC “reject” mode
    • Protects your brand
    • Reduces false positives
    • Ensures message integrity

    But DKIM is only strong if the private key is protected and rotated.


    Conclusion

    Most executives think DKIM is “set it and forget it.”
    But email security today requires:

    • Strong 2048-bit DKIM keys
    • Regular rotation
    • Tight private key protection
    • Monitoring through Proofpoint and EOP
    • DMARC enforcement

    This is not optional anymore — especially for banks.


    © 2012–2025 Jet Mariano. All rights reserved.
    For usage terms, please see the Legal Disclaimer.

error: Content is protected !!